Our website uses necessary cookies to enable basic functions and optional cookies to help us to enhance your user experience. Learn more about our cookie policy by clicking "Learn More".
Accept All Only Necessary Cookies
Icona Neural network fuzzy systems

5.4 by Engineering Apps


Jan 18, 2018

Informazioni su Neural network fuzzy systems

La migliore applicazione su rete neurale e sistemi fuzzy, imparare un argomento in un minuto

The app is a complete free handbook of Neural network, fuzzy systems which cover important topics, notes, materials, news & blogs on the course. Download the App as a reference material & digital book for Brain and Cognitive Sciences, AI, computer science, machine learning, knowledge engineering programs & degree courses. 

This useful App lists 149 topics with detailed notes, diagrams, equations, formulas & course material, the topics are listed in 10 chapters. The app is must have for all the engineering science students & professionals. 

The app provides quick revision and reference to the important topics like a detailed flash card notes, it makes it easy & useful for the student or a professional to cover the course syllabus quickly before an exams or interview for jobs. 

Track your learning, set reminders, edit the study material, add favorite topics, share the topics on social media. 

You can also blog about engineering technology, innovation, engineering startups,  college research work, institute updates, Informative links on course materials & education programs from your smartphone or tablet or at http://www.engineeringapps.net/. 

Use this useful engineering app as your tutorial, digital book, a reference guide for syllabus, course material, project work, sharing your views on the blog. 

Some of the topics Covered in the app are:

1) Register Allocation and Assignment

2) The Lazy-Code-Motion Algorithm

3) Matrix Multiply: An In-Depth Example

4) Rsa topic 1

5) Introduction to Neural Networks

6) History of neural networks

7) Network architectures

8) Artificial Intelligence of neural network

9) Knowledge Representation

10) Human Brain

11) Model of a neuron

12) Neural Network as a Directed Graph

13) The concept of time in neural networks

14) Components of neural Networks

15) Network Topologies

16) The bias neuron

17) Representing neurons

18) Order of activation

19) Introduction to learning process

20) Paradigms of learning

21) Training patterns and Teaching input

22) Using training samples

23) Learning curve and error measurement

24) Gradient optimization procedures

25) Exemplary problems allow for testing self-coded learning strategies

26) Hebbian learning rule

27) Genetic Algorithms

28) Expert systems

29) Fuzzy Systems for Knowledge Engineering

30) Neural Networks for Knowledge Engineering

31) Feed-forward Networks

32) The perceptron, backpropagation and its variants

33) A single layer perceptron

34) Linear Separability

35) A multilayer perceptron

36) Resilient Backpropagation

37) Initial configuration of a multilayer perceptron

38) The 8-3-8 encoding problem

39) Back propagation of error

40) Components and structure of an RBF network

41) Information processing of an RBF network

42) Combinations of equation system and gradient strategies

43) Centers and widths of RBF neurons

44) Growing RBF networks automatically adjust the neuron density

45) Comparing RBF networks and multilayer perceptrons

46) Recurrent perceptron-like networks

47) Elman networks

48) Training recurrent networks

49) Hopfield networks

50) Weight matrix

51) Auto association and traditional application

52) Heteroassociation and analogies to neural data storage

53) Continuous Hopfield networks

54) Quantization

55) Codebook vectors

56) Adaptive Resonance Theory

57) Kohonen Self-Organizing Topological Maps

58) Unsupervised Self-Organizing Feature Maps

59) Learning Vector Quantization Algorithms for Supervised Learning

60) Pattern Associations

61) The Hopfield Network

62) Limitations to using the Hopfield network

Each topic is complete with diagrams, equations and other forms of graphical representations for better learning and quick understanding. 

Neural network, fuzzy systems is part of Brain and Cognitive Sciences, AI, computer science, machine learning, electrical, electronics, knowledge engineering education courses and technology degree programs at various universities. 

Novità nell'ultima versione 5.4

Last updated on Jan 18, 2018

• Chapter and topics made offline acces
• New Intuitive Knowledge Test & Score Section
• Search Option with autoprediction to get straight the your topic
• Fast Response Time of Application

Traduzione in caricamento...

Informazioni APP aggiuntive

Ultima versione

Richiedi aggiornamento Neural network fuzzy systems 5.4

Caricata da

Cauan Wesley

È necessario Android

Android 4.0+

Mostra Altro

Neural network fuzzy systems Screenshot

Commento Loading...
Lingua
Iscriviti ad APKPure
Sii il primo ad accedere alla versione anticipata, alle notizie e alle guide dei migliori giochi e app Android.
No grazie
Iscrizione
Abbonato con successo!
Ora sei iscritto ad APKPure.
Iscriviti ad APKPure
Sii il primo ad accedere alla versione anticipata, alle notizie e alle guide dei migliori giochi e app Android.
No grazie
Iscrizione
Successo!
Ora sei iscritto alla nostra newsletter.