Our website uses necessary cookies to enable basic functions and optional cookies to help us to enhance your user experience. Learn more about our cookie policy by clicking "Learn More".
Accept All Only Necessary Cookies
Icona Dijkstra's Shortest Path Calc

1.2 by IDAARAH


Feb 1, 2016

Informazioni su Dijkstra's Shortest Path Calc

The simplest and the fastest way to calculate shortest paths between nodes

Instructions:

1. Set the Total Number of Nodes

2. Add information about the distance from one node to another and Click. If you make a mistake, click the row to delete it.

3. Make sure the and "From" values are less than the number of Nodes.

4. Set the starting Node. Must be between 1 and Number of Nodes. Default is 0

5. Click "Calculate" to see the Distance from Node 1 to the rest of the Nodes!

6. Rate App to Support Developer

You can request any additional features.

Dijkstra's algorithm, conceived by computer scientist Edsger Dijkstra in 1956 and published in 1959,[1][2] is an algorithm for finding the shortest paths between nodes in graph (which may represent, for example, road networks). The algorithm exists in many variants; Dijkstra's original variant found the shortest path between two nodes,[2] but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest path tree.

1 function Dijkstra(Graph, source):

2

3 dist[source] ← 0 // Distance from source to source

4 prev[source] ← undefined // Previous node in optimal path initialization

5

6 for each vertex v in Graph: // Initialization

7 if v ≠ source // Where v has not yet been removed from Q (unvisited nodes)

8 dist[v] ← infinity // Unknown distance function from source to v

9 prev[v] ← undefined // Previous node in optimal path from source

10 end if

11 add v to Q // All nodes initially in Q (unvisited nodes)

12 end for

13

14 while Q is not empty:

15 u ← vertex in Q with min dist[u] // Source node in first case

16 remove u from Q

17

18 for each neighbor v of u: // where v is still in Q.

19 alt ← dist[u] + length(u, v)

20 if alt < dist[v]: // A shorter path to v has been found

21 dist[v] ← alt

22 prev[v] ← u

23 end if

24 end for

25 end while

26

27 return dist[], prev[]

28

29 end function

Source: Wikipedia

Novità nell'ultima versione 1.2

Last updated on Feb 1, 2016

[1.2] Bug Fixes and Improvements

Traduzione in caricamento...

Informazioni APP aggiuntive

Ultima versione

Richiedi aggiornamento Dijkstra's Shortest Path Calc 1.2

Caricata da

Jose Afonso

È necessario Android

Android 3.0+

Mostra Altro

Dijkstra's Shortest Path Calc Screenshot

Commento Loading...
Lingua
Iscriviti ad APKPure
Sii il primo ad accedere alla versione anticipata, alle notizie e alle guide dei migliori giochi e app Android.
No grazie
Iscrizione
Abbonato con successo!
Ora sei iscritto ad APKPure.
Iscriviti ad APKPure
Sii il primo ad accedere alla versione anticipata, alle notizie e alle guide dei migliori giochi e app Android.
No grazie
Iscrizione
Successo!
Ora sei iscritto alla nostra newsletter.